102 research outputs found

    Diamagnetic depression observations at Saturn’s magnetospheric cusp by the Cassini spacecraft

    Full text link
    The magnetospheric cusp is a region where shocked solar wind plasma can enter a planetary magnetosphere, after magnetic reconnection has occurred at the dayside magnetopause or in the lobes. The dense plasma that enters the high‐latitude magnetosphere creates diamagnetic effects whereby a depression is observed in the magnetic field. We present observations of the cusp events at Saturn’s magnetosphere where these diamagnetic depressions are found. The data are subtracted from a magnetic field model, and the calculated magnetic pressure deficits are compared to the particle pressures. A high plasma pressure layer in the magnetosphere adjacent to the cusp is discovered to also depress the magnetic field, outside of the cusp. This layer is observed to contain energetic He++ (up to ∌100 keV) from the solar wind as well as heavy water group ions (W+) originating from the moon Enceladus. We also find a modest correlation of diamagnetic depression strength to solar wind dynamic pressure and velocity; however, unlike at Earth, there is no correlation found with He++ counts.Key PointsDiamagnetic depressions are found in the cusp and are observed to continue into the adjacent magnetosphereA heated plasma layer of mixed composition is found to depress the adjacent magnetospheric fieldDiamagnetic depression strength is correlated to solar wind dynamic pressure and velocity but not to the observed He++ counts, like at EarthPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137687/1/jgra53517_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137687/2/jgra53517-sup-0001-supinfo.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137687/3/jgra53517.pd

    Cassini plasma observations of Saturn's magnetospheric cusp

    Get PDF
    The magnetospheric cusp is a funnel-shaped region where shocked solar wind plasma is able to enter the high latitude magnetosphere via the process of magnetic reconnection. The plasma observations include various cusp signatures such as ion energy dispersions as well as diamagnetic effects. We present an overview analysis of the cusp plasma observations at the Saturnian magnetosphere from the Cassini spacecraft era. A comparison of the observations is made as well as classification into groups due to varying characteristics. The locations of the reconnection site are calculated and shown to vary along the subsolar magnetopause. We show the first in situ evidence for lobe reconnection that occurred at nearly the same time as dayside reconnection for one of the cusp crossings. Evidence for 'bursty' and more 'continous' reconnection signatures are observed in different cusp events. The events are compared to solar wind propagation models and it is shown that magnetic reconnection and plasma injection into the cusp can occur for a variety of upstream conditions. These are important results because they show that Saturn's magnetospheric interaction with the solar wind and the resulting cusp signatures are dynamic, and that plasma injection in the cusp occurs due to a variety of solar wind conditions. Furthermore, reconnection can proceed at a variety of locations along the magnetopause

    Energetic Ion Moments and Polytropic Index in Saturn’s Magnetosphere using Cassini/MIMI Measurements: A Simple Model Based on Îș‐Distribution Functions

    Full text link
    Moments of the charged particle distribution function provide a compact way of studying the transport, acceleration, and interactions of plasma and energetic particles in the magnetosphere. We employ Îș‐distributions to describe the energy spectra of H+ and O+, based on >20 keV measurements by the three detectors of Cassini’s Magnetospheric Imaging Instrument, covering the time period from DOY 183/2004 to 016/2016, 5 < L < 20. From the analytical spectra we calculate the equatorial distributions of energetic ion moments inside Saturn’s magnetosphere and then focus on the distributions of the characteristic energy (Ec=IE/In), temperature, and Îș‐index of these ions. A semiempirical model is utilized to simulate the equatorial ion moments in both local time and L‐shell, allowing the derivation of the polytropic index (Γ) for both H+ and O+. Primary results are as follows: (a) The ∌9 < L < 20 region corresponds to a local equatorial acceleration region, where subadiabatic transport of H+ (Γ∌1.25) and quasi‐isothermal behavior of O+ (Γ∌0.95) dominate the ion energetics; (b) energetic ions are heavily depleted in the inner magnetospheric regions, and their behavior appears to be quasi‐isothermal (Γ<1); (c) the (quasi‐) periodic energetic ion injections in the outer parts of Saturn’s magnetosphere (especially beyond 17–18 RS) produce durable signatures in the energetic ion moments; (d) the plasma sheet does not seem to have a ground thermodynamic state, but the extended neutral gas distribution at Saturn provides an effective cooling mechanism that does not allow the plasma sheet to behave adiabatically.Key PointsDerivation of energetic ion moments, Îș‐index, characteristic energy, temperature, and polytropic index in Saturn’s magnetospherePresentation of a semiempirical analytical model for the 20 keV energetic ion Pressure, density, and temperatureThe neutral gas at Saturn provides an effective cooling mechanism and does not allow the plasma sheet to behave adiabaticallyPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146558/1/jgra54546.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146558/2/jgra54546_am.pd

    Reconnection acceleration in Saturn's dayside magnetodisc:a multicase study with Cassini

    Get PDF
    Recently, rotationally driven magnetic reconnection was firstly discovered in Saturn’s dayside magnetosphere (Guo et al. 2018). This newly confirmed process could potentially drive bursty phenomena at Saturn, i.e., pulsating energetic particles and auroral emissions. Using Cassini’s measurements of magnetic fields and charged particles, we investigate particle acceleration features during three magnetic reconnection events observed in Saturn’s dayside magnetodisc. The results suggest that the rotationally driven reconnection process plays a key role in producing energetic electrons (up to 100 keV) and ions (several hundreds of keV). In particular, we find that energetic oxygen ions are locally accelerated at all three reconnection sites. Isolated, multiple reconnection sites were recorded in succession during an interval lasting for much less than one Saturn rotation period. Moreover, a secondary magnetic island is reported for the first time at the dayside, collectively suggesting that the reconnection process is not steady and could be ‘drizzle-like’. This study demonstrates the fundamental importance of internally driven magnetic reconnection in accelerating particles in Saturn’s dayside magnetosphere, and likewise in the rapidly rotating Jovian magnetosphere and beyond

    No Evidence for XMRV in German CFS and MS Patients with Fatigue Despite the Ability of the Virus to Infect Human Blood Cells In Vitro

    Get PDF
    BACKGROUND: Xenotropic murine leukemia virus-related virus (XMRV), a novel human retrovirus originally identified in prostate cancer tissues, has recently been associated with chronic fatigue syndrome (CFS), a disabling disease of unknown etiology affecting millions of people worldwide. However, several subsequent studies failed to detect the virus in patients suffering from these illnesses or in healthy subjects. Here we report the results of efforts to detect antibody responses and viral sequences in samples from a cohort of German CFS and relapsing remitting multiple sclerosis (MS) patients with fatigue symptoms. METHODOLOGY: Blood samples were taken from a cohort of 39 patients fulfilling the Fukuda/CDC criteria (CFS), from 112 patients with an established MS diagnosis and from 40 healthy donors. Fatigue severity in MS patients was assessed using the Fatigue Severity Scale (FSS). Validated Gag- and Env-ELISA assays were used to screen sera for XMRV antibodies. PHA-activated PBMC were cultured for seven days in the presence of IL-2 and DNA isolated from these cultures as well as from co-cultures of PBMC and highly permissive LNCaP cells was analyzed by nested PCR for the presence of the XMRV gag gene. In addition, PBMC cultures were exposed to 22Rv1-derived XMRV to assess infectivity and virus production. CONCLUSION: None of the screened sera from CFS and MS patients or healthy blood donors tested positive for XMRV specific antibodies and all PBMC (and PBMC plus LNCaP) cultures remained negative for XMRV sequences by nested PCR. These results argue against an association between XMRV infection and CFS and MS in Germany. However, we could confirm that PBMC cultures from healthy donors and from CFS patients can be experimentally infected by XMRV, resulting in the release of low levels of transmittable virus

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Principles Of Heliophysics: a textbook on the universal processes behind planetary habitability

    Full text link
    This textbook gives a perspective of heliophysics in a way that emphasizes universal processes from a perspective that draws attention to what provides Earth (and similar (exo-)planets) with a relatively stable setting in which life as we know it can thrive. The book is intended for students in physical sciences in later years of their university training and for beginning graduate students in fields of solar, stellar, (exo-)planetary, and planetary-system sciences.Comment: 419 pages, 119 figures, and 200 "activities" in the form of problems, exercises, explorations, literature readings, and "what if" challenge

    Auroral Processes at the Giant Planets: Energy Deposition, Emission Mechanisms, Morphology and Spectra

    Full text link
    • 

    corecore